<span>The line that is drawn perpendicular to the point at which a wave intersects a boundary is know as the Normal .
When the normal is drawn, the incident ray makes an angle with it known as the angle of incidence and the reflected ray makes an angle with it known as the angle of incidence. These angles are always equal.
The refracted ray makes an angle with the normal known as angle of refraction. The sin of angle of incidence to the sin of angle of refraction is called the refractive index( </span>μ= <span>sin i / sin r) .
hope all of it helps you!</span>
Answer:
(a) m = 1.6 x 10²¹ kg
(b) K.E = 2.536 x 10¹¹ J
(c) v = 7.12 x 10⁵ m/s
Explanation:
(a)
First we find the volume of the continent:
V = L*W*H
where,
V = Volume of Slab = ?
L = Length of Slab = 4450 km = 4.45 x 10⁶ m
W = Width of Slab = 4450 km = 4.45 x 10⁶ m
H = Height of Slab = 31 km = 3.1 x 10⁴ m
Therefore,
V = (4.45 x 10⁶ m)(4.45 x 10⁶ m)(3.1 x 10⁴ m)
V = 6.138 x 10¹⁷ m³
Now, we find the mass:
m = density*V
m = (2620 kg/m³)(6.138 x 10¹⁷ m³)
<u>m = 1.6 x 10²¹ kg</u>
<u></u>
(b)
The kinetic energy will be:
K.E = (1/2)mv²
where,
v = speed = (1 cm/year)(0.01 m/1 cm)(1 year/365 days)(1 day/24 h)(1 h/3600 s)
v = 3.17 x 10⁻¹⁰ m/s
Therefore,
K.E = (1/2)(1.6 x 10²¹ kg)(3.17 x 10⁻¹⁰ m/s)²
<u>K.E = 2.536 x 10¹¹ J</u>
<u></u>
(c)
For the same kinetic energy but mass = 77 kg:
K.E = (1/2)mv²
2.536 x 10¹¹ J = (1/2)(77 kg)v²
v = √(2)(2.536 x 10¹¹ J)
<u>v = 7.12 x 10⁵ m/s</u>
The answer is the less dense plate slides over the denser plate.
Answer:
a-
V= IR
9V = I ×( 12+6)
I = 9/ 18 A = 0.5 A
b
V=IR
240 = 6 A ×( 20 + R)
40 = 20 + R
R = 20 ohm
c
resultant resistance of the 2 parallel resistances= Ro
1/Ro = 1/ 5 + 1/ 20
1/Ro =( 20+5)/100
= 1/Ro = 1/4
Ro= 4 ohm
V=IR
V = 2A × ( 1+ 4 OHM)
V = 10V
d
equivalent resistance = Ro
1/Ro = 1/(2+8) + 1/(5+5)
1/Ro = 1/10 +1/10
2/10 = 1/ Ro
Ro= 10/2 = 5 ohm
V = IR
12V = I × 5Ohm
I=2.4 A