Answer:
51.2g of CO2
Explanation:
The first step is to balance the reaction equation as shown in the solution attached. Without balancing the reaction equation, one can never obtain the correct answer! Then obtain the masses of octane reacted and carbon dioxide produced from the stoichiometric equation. After that, we now compare it with what is given as shown in the image attached.
4 moles of water are produced
Explanation:
- 4 moles of water are produced when 5 moles of hydrogen is reacted with 2 moles of oxygen gas
- The balanced equation given is when 2 moles of hydrogen reacts with 1 mole of oxygen and it forms 2 moles of water.
- The equation we have to solve is the 5 moles of hydrogen is reacting with 2 moles of oxygen gas, we can write the equation as
- This is the balanced equation when 5 moles of hydrogen reacts with 2 moles of oxygen. The balanced equation means the number of hydrogen atoms and oxygen atoms on both sides would be equal in number.
I believe the answer is option B. The bonded pair of valence electrons are shown using circles
The largest atomic radius has Ba,because they are all metals of 2nd group,but as you know when you go down upright in the periodic table the metallic features getting stronger but also orbital layers increasing,and you can say more layers larger atomic radius.Hope I helped,sorry for English
Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.
Explanation:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.