Answer:
m = 31.284 grams
Explanation:
Given that,
The dimension of a magnesium block is 2.00 cm x 3.00 cm x 3.00 cm.
The density of magnesium is, d = 1.738 g/cm³
We need to find the mass of the magnesium block. We know that the density of an object is given by its mass per unit its volume. So,

So, the mass of the block is 31.284 grams.
Answer: 58.44g
Explanation: The molar mass of NaCl is 58.44g.
Answer:
Fe
Explanation:
The electrical conductivity depends mainly on the type of chemical bonds between the atoms of a compound.
In the case of MgF2, FeCl3 and FeO3, these have the type of ionic bond. This means that in the atoms of the compound there is an electron transfer, to keep eight electrons in the outermost layer and thus resemble the electronic configuration of the inert gas closest to each of the two elements, due to this ions of opposite charges are formed that are held together by electrostatic forces. These types of compounds are good conductors of electricity, however, to have this property, they must be dissolved in water or molten.
In the case of Fe, however, the type of union between atoms is metallic. In this type of junction, valence electrons are quite free inside the metal, which makes it easy for them to move. For this reason, this compound will conduct electricity in a solid state.
An Exothermic reaction releases energy into the surroundings and so the products have more potential energy then the reactants. The enthalpy change is a negative value. Whereas, an endothermic reaction involves the absorption of energy into the system and so the reactants have more potential energy than the products. The enthalpy change is a positive value. This is clearly represented in energy profile diagrams.
The specific heat of water is higher than the specific heat of concrete.