Answer:
14,653 J.
Explanation:
We know that,
Total mechanical energy is equal to the sum of all the potential and kinetic energies.
Given,
Kinetic energy when a car jumps off a ramp= 5000 J
Potential energy = 4685 J
Potential energy when the car lands= 4968 J
TME = 5000 + 4685 + 4968
= 14,653 J
Hence, the car's total mechanical engery is equal to 14,653 J.
Yes. An object of large mass is pulled down onto a surface with a greater force than an object of low mass and, as a consequence, there is greater friction between the surface of the heavy object than between the surface of the light object.
1) D
2) D.) Greater than 
Explanation:
1)
The phenomenon of total internal reflection occurs when a ray of light hitting the interface between two mediums is totally reflected back into the original medium, therefore no refraction into the second medium occurs.
This phenomenon occurs only if two conditions are satisfied:
- The index of refraction of the first medium is larger than the index of refraction of the 2nd medium
- The angle of incidence is greater than a certain angle called critical angle
In picture 1, we have 4 different diagrams. In the diagrams:
- The red arrow represents the incident ray
- The green arrow represents the refracted ray
- The blue arrow represents the reflected ray
Total internal reflection occurs when there is no refraction, therefore when there is no green arrow: this occurs only in figure D, so this is the correct option. (in figure C, there is a refracted ray but it is parallel to the interface: this condition occurs when the angle of incidence is exactly equal to the critical angle, however in this problem, the angle of incidence is greater than the critical angle, so the correct option is D)
2)
As we stated in problem 1), total internal reflection occurs when the angle of incidence is equal or greater than the critical angle. Therefore in this case, the angle of incidence must be
D.) Greater than 
<u>Given data</u>
Determine Internal energy of gas N₂, (U) = ?
Temperature (T) = 25° C
= 25+273 = 298 K,
Gas constant (R) = 8.31 J/ mol-K ,
Number of moles (n) = 3 moles,
<u>Internal energy of N₂ </u>
Internal energy is a property of thermodynamics, the concept of internal energy can be understand by ideal gas. For example N₂, the observations for oxygen and nitrogen at atmospheric temperatures, f=5, (where f is translational degrees of freedom).
So per kilogram of gas,
The internal energy (U) = 5/2 .n.R.T
= (5/2) × 3 × 8.31 ×298
= 18572.85 J
<em>The internal energy of the N₂ is 18,572.85 J and it is approximately equal to 18,600 J given in the option B.</em>
Answer:
Decrease of snake, coyote, and hawk population. Increase of sagebrush and cacti.
Reasons:
The rats are aten by the snake coyote and hawks so if a food source is taken from them they are going to have to fight more for food. The rats eat the sagebrush and cacti so if they arent getting eaten as much, they have mroe ime to produce.