Answer:
a) L = 3.29 10⁻⁴ H, b)U = 5.33 10⁻² J
Explanation:
a) The inductance is a solenoid this given carrier
L =
The magnetic field inside the solenoid is
B = μ₀
hence the magnetic flux
Ф_B = B. A = μ₀
we substitute in the expression of inductance
L = N² μ₀ A /l
let's find the area of each turn
A = π r²
A = π 0.02²
A = 1.2566 10⁻³ m²
let's calculate
L = 250² 4π 10⁻⁷ 1.2566 10⁻² / 0.3
L = 3.29 10⁻⁴ H
b) The stored energy is
U = ½ L i²
let's calculate
U = ½ 3.29 10⁻⁴ 18²
U = 5.33 10⁻² J
Answer: 
Explanation:
Given
Mass of the elevator is 
Time period of ascension 
cruising speed 
Distance moved by elevator during this time
Suppose Elevator starts from rest

Distance moved

Gain in Potential Energy is

Average power during this period is

Oxidation number is the charge.
Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.