Answer: 390, right
explanation: The net force is just the sum of all of these forces acting on an object. ... This equation is the sum of n forces acting on an object. The magnitude of the net force acting on an object is equal to the mass of the object multiplied by the acceleration of the object, as shown in this formula.
From the law of conservation of momentum
m1u1+ m2u2= m1v1+ m2v2
110*8+ 110*-10= 110*-10 + 110* v2
v2= 8 m/sec
Answer:
Workdone = 465766038 Joules.
Explanation:
<u>Given the following data;</u>
Mass = 1167
Initial velocity = 10m/s
Final velocity =28m/s
To find the workdone;
We know that from the workdone theorem, the workdone by an object or a body is directly proportional to the kinetic energy possessed by the object due to its motion.
Mathematically, it is given by the equation;
W = Kf - Ki
W = ½MVf² - ½MVi²
Substituting into the equation
W = ½(1167)*28² - ½(1167)*10²
W = ½ * 1361889* 784 - ½ * 1361889 * 100
W = 533860488 - 68094450
Workdone = 465766038 Joules.
Answer:
Explanation:
a )
hear energy required to melt 1 g of ice = 340 J ,
hear energy required to melt 80 g of ice = 340 x 80 J = 27220 J .
b ) energy gained by the melted ice ( water at O°C ) = m ct
where m is mass of water , s is specific heat and t is rise in temperature
= 80 x 4.2 x ( 8°C - 0°C)
= 2688 J .
c )
energy lost by lime juice = energy gained by ice and water
= 27220 J + 2688 J .
= 29908 J .
d )
Let specific heat required be S
Heat lost by lime juice = M S T
M is mass of lime juice , S is specific heat , T is decrease in temperature
= 320 g x S x ( 29 - 8 )°C
= 6720 S
For equilibrium
Heat lost = heat gained
6720 S = 29908 J
S = 4.45 J /g °C .
Assuming that reaching a height 0 doesn’t stop the ball, and that it accelerates at 9.8 m/s^2, the ball would be traveling at 0.5 + 0.7*9.8 = 7.36 m/s downwards.