Double replacement.
Ba(OH)2 + H2SO4 ====> 2H2O + BaSO4
Answer:
0.924 g
Explanation:
The following data were obtained from the question:
Volume of CO2 at RTP = 0.50 dm³
Mass of CO2 =?
Next, we shall determine the number of mole of CO2 that occupied 0.50 dm³ at RTP (room temperature and pressure). This can be obtained as follow:
1 mole of gas = 24 dm³ at RTP
Thus,
1 mole of CO2 occupies 24 dm³ at RTP.
Therefore, Xmol of CO2 will occupy 0.50 dm³ at RTP i.e
Xmol of CO2 = 0.5 /24
Xmol of CO2 = 0.021 mole
Thus, 0.021 mole of CO2 occupied 0.5 dm³ at RTP.
Finally, we shall determine the mass of CO2 as follow:
Mole of CO2 = 0.021 mole
Molar mass of CO2 = 12 + (2×16) = 13 + 32 = 44 g/mol
Mass of CO2 =?
Mole = mass /Molar mass
0.021 = mass of CO2 /44
Cross multiply
Mass of CO2 = 0.021 × 44
Mass of CO2 = 0.924 g.
A CH compound is combusted to produce CO2 and H2O
CnHm + O2 -----> CO2 + H2O
Mass of CO2 = 23.1g
Mass of H2O = 10.6g
Calculate by mass of the compounds
For Carbon C, divide by molecular weight of CO2 and multiply with Carbon
molecular weight. So C in grams = 23.1 x (12.01 / 44.01) = 6.3 g C
For Hydrogen H, divide by molecular weight of H2O and multiply with Hydrogen molecular weight. So H in grams = 10.6 x (2.01 / 18.01) = 0.53 g C
= 1.18 of H
Calculate the moles for C and H
6.3 grams of C x (1 mole/12.01 g C) = 0.524 moles of C
1.18 grams of H x (1 mole/1.008 g H) = 1.17 moles of H
Divides by both mole entities with smallest
C = 0.524 / 0.524 = 1 x 4 = 4
H = 1.17 / 0.524 = 2.23 x 4 = 10
The empirical formula is C4H10.
Social cost, Economic costs and Environmental Costs could be reduced by using Renewable energy sources like Hydro Power, Solar Power, Wind Power, Biomass and Geothermal plants. They can provide sustainable energy services since they are available all of the time. They known to have less impacts on various aspects especially in the environmental aspect comparing it to nonrenewable resources like fossil fuel based power plants.