Hello there! Quantitive data has to do with measurements that can be shown with numbers. Examples of this are things like your height and the length of your arms. With that alone, A and B are eliminated, because those answer choices make no sense. They can't be expressed by numbers and you can't measure colors or odors mathematically. Volume is a way to measure something that CAN be written down by numbers. D is the only answer choice that fits the definition of quantitive data. The answer is D: volume.
It is most accurate to say that body mass index (BMI) provides information about an individual's height-weight ratio. The correct answer is B.
Translate please, i’d be able to help better:)
Answer:
Lens at a distance = 7.5 cm
Lens at a distance = 6.86 cm (Approx)
Explanation:
Given:
Object distance u = 12 cm
a) Focal length = 20 cm
b) Focal length = 16 cm
Computation:
a. 1/v = 1/u + 1/f
1/v = 1/20 + 1/12
v = 7.5 cm
Lens at a distance = 7.5 cm
b. 1/v = 1/u + 1/f
1/v = 1/16 + 1/12
v = 6.86 cm (Approx)
Lens at a distance = 6.86 cm (Approx)
a) 32.3 N
The force of gravity (also called weight) on an object is given by
W = mg
where
m is the mass of the object
g is the acceleration of gravity
For the ball in the problem,
m = 3.3 kg
g = 9.8 m/s^2
Substituting, we find the force of gravity on the ball:

b) 48.3 N
The force applied

The ball is kicked with this force, so we can assume that the kick is horizontal.
This means that the applied force and the weight are perpendicular to each other. Therefore, we can find the net force by using Pythagorean's theorem:

And substituting
W = 32.3 N
Fapp = 36 N
We find

c) 
The ball's acceleration can be found by using Newton's second law, which states that
F = ma
where
F is the net force on an object
m is its mass
a is its acceleration
For the ball in this problem,
m = 3.3 kg
F = 48.3 N
Solving the equation for a, we find
