Mole fraction of Oxygen=0.381
Mole fraction of Oxygen= (range of moles of oxygen) ÷(general moles)
also, mole fraction of oxygen = (partial stress of oxygen) ÷ (total strain)
consequently , mole fraction of Oxygen= (2.31 atm)÷(2.31 atm + 3.75 atm)
= 0.381
The mole fraction may be calculated by means of dividing the variety of moles of 1 element of a solution by the entire quantity of moles of all the additives of a solution. It is cited that the sum of the mole fraction of all of the components inside the solution should be identical to 1.
Mole fraction is a unit of awareness. in the solution, the relative amount of solute and solvents are measured by way of the mole fraction and it's far represented through “X.” The mole fraction is the variety of moles of a selected aspect inside the answer divided by way of the entire range of moles in the given answer.
Mole fraction is the ratio between the moles of a constituent and the sum of moles of all ingredients in a mixture. Mass fraction is the ratio between the mass of a constituent and the full mass of a mixture.
The question is incomplete. Please read below to find the missing content.
Assuming that only the listed gases are present, what would the mole fraction of oxygen gas be for each of the following situations? A gas sample of 2.31 atm of oxygen gas and 3.75 atm of hydrogen gas react to form water vapor. Assume the volume of the container and the temperature inside the container does not change.
Learn more about the mole fraction here brainly.com/question/14783710
#SPJ1
Zinc because the only metals that would be able to reduce copper ions in solution would be hydrogen, lead, tin, nickel, iron, zinc, aluminum, Magnesium, sodium, calcium, potassium, and lithium. and according to your answer choices Zinc is the answer.
Answer: Which elements are found in the greatest number of substances?
...
Chemical Name Sucrose
Chemical Formula C12H22O11
Number of Elements 3
Name of Elements Carbon, Hydrogen, Oxygen
Number of Atoms 45
Explanation:
Answer:
The frequency of the photon that can dissociate dichlorine is 6.02×10¹⁴ Hz
Explanation:
The energy of a photon is given by the equation:
E=h·f
E=3.99×10⁻¹⁹ J/molecule
h (Planck's constant)=6.626×10⁻³⁴ m²·kg/s
∴ f=E/h
=6.02×10¹⁴ s⁻¹= 6.02×10¹⁴ Hz
PH = -log[H+]
pH = -log[1,7×10^-9]
pH = 8,77
pH + pOH = 14
pOH = 14 - 8,77
pOH = 5,23