Answer:
The temperature is 2541.799 K
Explanation:
The formula for black body radiation is given by the relation;
Q = eσAT⁴
Where:
Q = Rate of heat transfer 56.6
σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)
A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²
e = emissivity = 0.288
T = Temperature
Therefore, we have;
T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴
T = 2541.799 K
The temperature = 2541.799 K.
The velocity of the submarine immediately after firing the missile is 0.0104 m/s
Explanation:
Mass of the submarine M=50 tonne=
Mass of the missile m=40 kg
velocity of the missile v= 13m/s
we have to calculate the velocity of the submarine after firing
This is the recoil velocity and its expression is derived from the law of conservation of momentum
recoil velocity of the submarine

Volumetric cylinders and volumetric flasks
Answer: A)30V. First find the current of the circuit. I=V/R(total resistance). So I=60/120=0.5. Now to find voltage drop in R3 use ohms law as given. V(of 3)=(0.5)(60)=30V
Answer:
Thus the time taken is calculated as 387.69 years
Solution:
As per the question:
Half life of
= 28.5 yrs
Now,
To calculate the time, t in which the 99.99% of the release in the reactor:
By using the formula:

where
N = No. of nuclei left after time t
= No. of nuclei initially started with

(Since, 100% - 99.99% = 0.01%)
Thus

Taking log on both the sides:


t = 387.69 yrs