For the answer to the question, ergonomics<span> is the science of fitting the job to the worker. When there is a mismatch between the physical requirements of the job and the physical capacity of the worker, work-related musculoskeletal disorders (MSDs) can result. Ergonomics is the practice of designing equipment and work tasks to conform to the capability of the worker, it provides a means for adjusting the work environment and work practices to prevent injuries before they occur.</span>
Answer:
1. the electric potential energy of the electron when it is at the midpoint is - 2.9 x
J
2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x
J
Explanation:
given information:
= 3 nC = 3 x
C
= 2 nC = 2 x
C
r = 50 cm = 0.5 m
the electric potential energy of the electron when it is at the midpoint
potential energy of the charge, F
F = k 
where
k = constant (8.99 x
)
electron charge,
= - 1.6 x
C
since it is measured at the midpoint,
r = 
= 0.25 m
thus,
F = 
= k
+ k
=
(
)
= (8.99 x
)( - 1.6 x
)(3 x
+2 x
)/0.25
= - 2.9 x
J
the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge
= 10 cm = 0.1 m
= 0.5 - 0.1 = 0.4 m
F = k
+ k
=
(
+
)
= (8.99 x
)( - 1.6 x
)(3 x
/0.1+2 x
/0.4)
= - 5.04 x
J
Answer: 3.75 m
Explanation:
5 squirts in 1 second
So, 1 squirt in 1/5 second which is 0.2 second.
The difference in timing of two consecutive squirt is 0.2 second, so
time (t) = 0.2 s.
speed (s) = 15 m/s
Distance of separation (d) = ?
Now, formula for distance is
d = s × t
d = 15 × 0.2
d = 3.75 m
Answer:
Wavelength, 
Explanation:
It is given that,
Speed of radio waves is 
Frequency of radio waves is f = 101,700,000 Hz
We need to find the wavelength of WFNX’s radio waves. The relation between wavelength, frequency and speed of a wave is given by :

is wavelength

So, the wavelength of WFNX’s radio waves is 2.94 m.