Answer:
P =18760.5 Pa
Explanation:
Given that
Volume ,V= 0.0434 m³
Mass ,m= 4.19 g = 0.00419 kg
T= 417 K
If we assume that water vapor is behaving like a ideal gas ,then we can use ideal gas equation
Ideal gas equation P V = m R T
p=Pressure ,V = Volume ,m =mass
T=Temperature ,R=Universal gas constant
Now by putting the values
P V = m R T
For water R= 0.466 KJ/kgK
P x 0.0434 = 0.00419 x 0.466 x 417
P =18.7605 KPa
P =18760.5 Pa
Therefore the answer is 18760.5 Pa
Answer:
Around 3.57m/s
Explanation:
p=mv
Let's denote the momentum, mass, and velocity of the car with the subscript 1, and for the truck use 2. After the collision, the combined momentum can be denoted with the subscript 3.

Hope this helps!
Answer:
(a) the net charge inside the closed surface.
Explanation:
In Gauss' Law, Qencl refers to the net charge inside the Gaussian surface. This surface is usually taken as a symmetric geometric surface, but this is merely for simplicity. Gauss' Law holds for any closed surface. Inside this surface there can be insulators as well as conductors. Regardless of the geometry or the materials inside, Qencl refers to the net charge inside the closed surface. The charge outside the surface is irrelevant for Gauss' Law, therefore all the charge in the physical system is not included in Gauss' Law.
<span> <span> The answer to your question is: increase the force applied to the object.
Two items are provided as a basis for that conclusion:
1. According to Newton's Second Law of Motion, the formula for finding force is: F = ma
where F is the force,
m is the mass of an object,
and a is the acceleration of the object.
And 2: work = force x distance or W = F x d.</span></span>
Answer:
a).
b).
Explanation:
a).
The work of the spring is find by the formula:

So knowing the work can find the constant K'

Solve for K'


b).
The force of the spring realice a motion so using the force and knowing the accelerations can find the mass



