Answer:
1. True WA > WB > WC
Explanation:
In this exercise they give work for several different configurations and ask that we show the relationship between them, the best way to do this is to calculate each work separately.
A) Work is the product of force by distance and the cosine of the angle between them
WA = W h cos 0
WA = mg h
B) On a ramp without rubbing
Sin30 = h / L
L = h / sin 30
WB = F d cos θ
WB = F L cos 30
WB = mf (h / sin30) cos 30
WB = mg h ctan 30
C) Ramp with rubbing
W sin 30 - fr = ma
N- Wcos30 = 0
W sin 30 - μ W cos 30 = ma
F = W (sin30 - μ cos30)
WC = mg (sin30 - μ cos30) h / sin30
Wc = mg (1 - μ ctan30) h
When we review the affirmation it is the work where there is rubbing is the smallest and the work where it comes in free fall at the maximum
Let's review the claims
1. True The work of gravity is the greatest and the work where there is friction is the least
2 False. The job where there is friction is the least
3 False work with rubbing is the least
4 False work with rubbing is the least
Answer:
Adding heat makes the particles move faster so the particles have more kinetic energy when more thermal energy is added
Explanation:
Answer:
The banking angle is 23.84 degrees.
Explanation:
Given that,
Radius of the curve, r = 194 m
Speed of the car, v = 29 m/s
On the banked curve, the centripetal force is balanced by the force of friction such that,




So, the banking angle is 23.84 degrees. Hence, this is the required solution.
Answer: 10 m/s^2
Explanation:
1) The second law of Newton gives the definition and formula to calculate the net force:
Net force acting on an object = mass * acceleration.
2) From that, when you know the net force acting of the object and its mass, you can solve for the acceleration:
acceleration = Net force / mass
acceleration = 50 N / 5 kg = 10 m/s^2, which is the answer.
Answer:
its on wheels and they are supposed to make it eas
Explanation: