A particle confined to move along a curved path has only one degree of freedom. inclined plane are some examples of constrained motion. Every condition of constraint reduces the number of degree of freedom by one.
I hope this helps!
Answer: 17.68 s
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the ball when it hits the ground
is the initial height of the ball
is the initial velocity of the ball
is the time when the ball strikes the ground
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Rewritting (2):
(3)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(4)
Where:



Substituting the known values:
(5)
Solving (5) we find the positive result is:

Answer:
The mass of Ar is 36.91g
Explanation:
The gas mixture consist of Neon(Ne) and Argon(Ar)
Partial pressure of Ar = total pressure of mixture - partial pressure = 4 - 0.3 = 3.7 atm
Mole fraction of Ar = partial pressure of Ar ÷ total pressure of mixture = 3.7/4 = 0.925
Mass of Ar = 0.925 × molecular weight of Ar = 0.925 × 39.9 = 36.91g
210J
PE is mgh in this context.
We simply asked to name three uses for mercury.
The most common and well-known use of mercury is the production of thermometers. It's property to stay liquid at room temperature makes it ideal for a temperature indicator. However, the use of mercury is thermometers has been phased out due to health hazards.
It is also used to form an amalgam which is the result of its combination with silver or gold. Mercury has been used to mine gold and silver. This application has also been phased out.
Today's use of mercury includes mercury-vapor lamps which are the bright lamps used in high-ways.