Answer:
concave lens
Explanation:
it's concave lens because it diverges the ray/beam of light.
Protons,neutrons,electrons
Answer:
Rutherford's experiment, also known as

supports the existence of neutrons and the nucleus.
Explanation:
In the above diagram, Rutherford was trying to explain his contributions using thin foils of gold and other metals as targets for alpha particles from a radioactive source.
He observed that the majority of particles penetrated the foil either undeflected or with only a slight deflection. But, every now and then an alpha particle was scattered(or deflected) at a large angle..
According to Rutherford, most of the atoms must be empty space. This explains why the majority of alpha particles passed through through the gold foil with little or no deflection. The atoms positive charges, Rutherford proposed are all concentrated in the Nucleus, <em>which</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>dense</em><em> </em><em>central</em><em> </em><em>core</em><em> </em><em>withi</em><em>n</em><em> </em><em>the</em><em> </em><em>atom</em><em>. </em>
Whenever an alpha particle came close to a nucleus in the scattering experiment, it experienced a large repulsive force and therefore a large deflection. Moreover, an alpha particle coming towards a nucleus would be completely repelled and its direction would be reversed. The positively charged particles in the Nucleus are called Protons.
I <em>hope</em><em> </em><em>you</em><em> </em><em>find</em><em> </em><em>this</em><em> </em><em>useful</em><em>.</em><em>.</em><em>. </em><em>Have</em><em> </em><em>a</em><em> </em><em>lovely</em><em> </em><em>day</em><em>. </em>
Answer:
fireproofing spray used in firefighting can be termed as one of the possible discovery that would be attributed to an inorganic molecule.
Explanation: • There a number of advancement been made each day to improve the different process either domestic, industrial, or related to research work. As a number of professionals are always in search to get the right set of information or data to get to a more proper conclusion.
<u>Answer:</u> The mass of second isotope of indium is 114.904 amu
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the mass of isotope 2 of indium be 'x'
Mass of isotope 1 = 112.904 amu
Percentage abundance of isotope 1 = 4.28 %
Fractional abundance of isotope 1 = 0.0428
Mass of isotope 2 = x amu
Percentage abundance of isotope 2 = [100 - 4.28] = 95.72 %
Fractional abundance of isotope 2 = 0.9572
Average atomic mass of indium = 114.818 amu
Putting values in equation 1, we get:
![114.818=[(112.904\times 0.0428)+(x\times 0.9572)]\\\\x=114.904amu](https://tex.z-dn.net/?f=114.818%3D%5B%28112.904%5Ctimes%200.0428%29%2B%28x%5Ctimes%200.9572%29%5D%5C%5C%5C%5Cx%3D114.904amu)
Hence, the mass of second isotope of indium is 114.904 amu