Answer:
[CaSO₄] = 36.26×10⁻² mol/L
Explanation:
Molarity (M) → mol/L → moles of solute in 1L of solution
Let's convert the volume from mL to L
250 mL . 1L/1000 mL = 0.250L
We need to determine the moles of solute. (mass / molar mass)
12.34 g / 136.13 g/mol = 0.0906 mol
M → 0.0906 mol / 0.250L = 36.26×10⁻² mol/L
There are many ways to test and identify metal. The easiest way is observing its color. Also how reflective it is. Other ways would be boiling point, melting point, density, or conductivity of the metal.
Hope This Helps and God Bless!
The given formula for heat, Q=mc(Tf-Ti), is the best way to solve such problems with changes in temperature. It can be said that m is the mass of the substance. C is the specific heat of the substance. The term (Tf-Ti) is the change in temperature.
Q = mc(Tf-Ti) = 480g(0.96 J/g-C)(234-22) = 97689.6 Joules of heat
Answer: 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.
Explanation:
According to the dilution law,

where,
= concentration of stock solution = 12.0 M
= volume of stock solution = ?
= concentration of diluted solution= 6.00 M
= volume of diluted acid solution = 500 ml
Putting in the values we get:


Thus 250 ml of stock solution with molarity of 12.0 M is measured using a pipette and 250 ml of water is added to volumetric flask of 500 ml to make the final volume of 500 ml.