Answer:
3.0 x10^-3 J
Explanation:
The potential energy of a spring is given by PE = (0.5)k*x^2
Where
K: Spring Constant = 60 N/m
x: displacement of the spring from its equilibrium position = 1cm = 0.01m
Then PE = 0.5(60)(.01)^2 = 0.003J = 3.0 x10^-3 J
<span> answer>>>>electric force <<<<by the way i don't like physics but i answer this for you ^-^</span>
<span>This is because centripetal force is just the net force of a circular motion. There are no attractive or repulsive forces here. This is not the case here. </span>
<span>The gravitational force is a force reliant on mass and attraction of the masses. There are attractive forces here, but not really repulsive forces. </span>
<span>The electric force is the only one that would make sense because it has to do with a relationship between charges and includes both repulsive and attractive forces.</span>
The final volume of the gas is 144.25 L
Explanation:
For an ideal gas kept at constant pressure, the work done by the gas on the surroundings is given by

where
p is the pressure of the gas
is the initial volume
is the final volume
For the gas in the cylinder in this problem,
p = 2.00 atm

And we also know the work done,
W = 288 J
So we can solve the equation for
, the final volume:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
Inductance, L = 0.0212 Henries
Explanation:
It is given that,
Number of turns, N = 17
Current through the coil, I = 4 A
The total flux enclosed by the one turn of the coil, 
The relation between the self inductance and the magnetic flux is given by :


L = 0.0212 Henries
So, the inductance of the coil is 0.0212 Henries. Hence, this is the required solution.