Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
The new frequency (F₂ ) will be related to the old frequency by a factor of one (1)
Explanation:
Fundamental frequency = wave velocity/2L
where;
L is the length of the stretched rubber
Wave velocity = 
Frequency (F₁) = 
To obtain the new frequency with respect to the old frequency, we consider the conditions stated in the question.
Given:
L₂ =2L₁ = 2L
T₂ = 2T₁ = 2T
(M/L)₂ = 0.5(M/L)₁ = 0.5(M/L)
F₂ = ![\frac{\sqrt{\frac{2T}{0.5(\frac{M}{L})}}}{4*L} = \frac{\sqrt{4(\frac{T}{\frac{M}{L}}})}{4*L} = \frac{2}{2} [\frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}] = F_1](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B2T%7D%7B0.5%28%5Cfrac%7BM%7D%7BL%7D%29%7D%7D%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B4%28%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%29%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B2%7D%7B2%7D%20%5B%5Cfrac%7B%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%7D%7B2%2AL%7D%5D%20%3D%20F_1)
Therefore, the new frequency (F₂ ) will be related to the old frequency by a factor of one (1).
The first one might be faunal succsession and the 2nd one might be metamorphic rock
Answer:
R = 2216m and The normal force of the seat on the pilot is 5008N
Explanation:
See attachment below please.
Kinetic energy increases, potencial energy decreases,
kinetic energy + potential energy = energy, energy can not be destroyed, just transformed