Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
Answer:
3.31m/s
Explanation:
Angular momentum for 3s is



Moment if inertia is


Angular speed
ω = L/I

The speed of each ball is
V = ωL

If the temperature is increased the particles gain more kinetic energy or vibrate faster. This means that they move faster and take more space.
The momentum of the car is 4.4x10^3 kg•m/sec