Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
Answer:
The speed of the plank relative to the ice is:

Explanation:
Here we can use momentum conservation. Do not forget it is relative to the ice.
(1)
Where:
- m(g) is the mass of the girl
- m(p) is the mass of the plank
- v(g) is the speed of the girl
- v(p) is the speed of the plank
Now, as we have relative velocities, we have:
(2)
v(g/b) is the speed of the girl relative to the plank
Solving the system of equations (1) and (2)



I hope it helps you!
In simple words, flux can be stated as the rate of flow of a fluid, radiant energy, or particles across a given area.
<u>Explanation:</u>
<u>Mutual Flux:</u>
- The magnetic lines present in among two magnets or solenoid is mutual flux.
- These are the lines in which the attraction and repulsion happens.
- The SI unit of mutual flux is the Henry
<u>Leakage Flux:</u>
- In simple words, it can be stated as the magnetic flux which does not follow the specially designed way in a magnetic circuit.
- Leakage flux in the induction motor takes spot due to current runs through the essence of the induction motor.
- The SI unit of Leakage flux is the Weber
<u>Magnetizing flux</u>
- Magnetic flux is an analysis of the entire magnetic field which moves in a given field
- In simple words can be defined as the Magnetic flux is what generates the field around a magnetic material.
- The SI unit of magnetic flux is the Weber
Answer:
no poop comes out from your but
Explanation: