<span>Direct Free Kick
Pass
<span>and Dribbling</span></span>
Answer:
6.45×10¯²⁶ J
Explanation:
From the question given above, the following data were obtained:
Frequency (f) = 97.3 MHz
Energy (E) =?
Next, we shall convert 97.3 MHz to Hz. This can be obtained as follow:
1 MHz = 1×10⁶ Hz
Therefore,
97.3 MHz = 97.3 MHz × 1×10⁶ Hz / 1 MHz
97.3 MHz = 9.73×10⁷ Hz
Thus, 97.3 MHz is equivalent to 9.73×10⁷ Hz.
Finally, we shall determine the energy at which the frequency is broadcasting. This can be obtained as follow:
Frequency (f) = 9.73×10⁷ Hz
Planck's constant (h) = 6.63×10¯³⁴ Js
Energy (E) =?
E = hf
E = 6.63×10¯³⁴ × 9.73×10⁷
E = 6.45×10¯²⁶ J
Therefore, the energy at which the frequency is broadcasting is 6.45×10¯²⁶ J
Answer:
A) its internal (thermal) energy does not change.
Explanation:
When a fixed amount of ideal gas goes through an isothermal expansion
Answer:
F = N*μ or F =m*g*μ
Explanation:
The friction force is defined as the product of the normal force by the corresponding friction factor.
When a body is in equilibrium over a horizontal plane its normal force value shall be equal to:
![N = m*g\\where:\\m=mass [kg]\\g=gravity [m/s^2]\\N= normal force [N]](https://tex.z-dn.net/?f=N%20%3D%20m%2Ag%5C%5Cwhere%3A%5C%5Cm%3Dmass%20%5Bkg%5D%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5CN%3D%20normal%20force%20%5BN%5D)
if we simplify this formula more for a balanced body on a horizontal plane, we will have.
