Answer:
By using observations from the Atacama Cosmology Telescope (ACT) in Chile, the new findings match the measurements of the Planck satellite data of the same ancient light.
Explanation:
I would say the answer is B
Hope it helps!
- Mass of the car (m) = 2000 Kg
- Initial velocity (u) = 15 m/s
- Force (F) = 10000 N
- Time (t) = 3 s
- Let the acceleration be a.
- By using the formula, F = ma, we get,
- 10000 N = 2000 Kg × a
- or, a = 10000 N ÷ 2000 Kg
- or, a = 5 m/s^2
- Let the final velocity be v.
- By using the formula, v = u + at, we get,
- v = 15 m/s + 5 m/s^2 × 3 s
- or, v = 15 m/s + 15 m/s
- or, v = 30 m/s
<u>Answer</u><u>:</u>
<em><u>The </u></em><em><u>new </u></em><em><u>sp</u></em><em><u>e</u></em><em><u>ed </u></em><em><u>of </u></em><em><u>the </u></em><em><u>car </u></em><em><u>is </u></em><em><u>3</u></em><em><u>0</u></em><em><u> </u></em><em><u>m/</u></em><em><u>s.</u></em>
Hope you could get an idea from here.
Doubt clarification - use comment section.
The amplitude of a wave corresponds to its maximum oscillation of the wave itself.
In our problem, the equation of the wave is
![y(x,t)= (0.750cm)cos(\pi [(0.400cm-1)x+(250s-1)t])](https://tex.z-dn.net/?f=y%28x%2Ct%29%3D%20%280.750cm%29cos%28%5Cpi%20%5B%280.400cm-1%29x%2B%28250s-1%29t%5D%29)
We can see that the maximum value of y(x,t) is reached when the cosine is equal to 1. When this condition occurs,

and therefore this value corresponds to the amplitude of the wave.
Answer : The change in momentum of an object is equal to the impulse that acts on it.
Explanation :
Change in momentum : The change in momentum of an object is the product of the mass and the change in velocity of an object.
The formula of change in momentum is,

Impulse : An impulse of an object is the product of the force applied on an object and the change in time. Impulse is also equivalent to the change in momentum of an object.

Proof :

Hence, the change in momentum of an object is equal to the impulse that acts on it.