Answer:
I believe it is B, not 100% sure though
Explanation:
Answer:
Part a)
![T_L = 155.4 N](https://tex.z-dn.net/?f=T_L%20%3D%20155.4%20N)
Part b)
![T_R = 379 N](https://tex.z-dn.net/?f=T_R%20%3D%20379%20N)
Explanation:
As we know that mountain climber is at rest so net force on it must be zero
So we will have force balance in X direction
![T_L cos65 = T_R cos80](https://tex.z-dn.net/?f=T_L%20cos65%20%3D%20T_R%20cos80)
![T_L = 0.41 T_R](https://tex.z-dn.net/?f=T_L%20%3D%200.41%20T_R)
now we will have force balance in Y direction
![mg = T_L sin65 + T_Rsin80](https://tex.z-dn.net/?f=mg%20%3D%20T_L%20sin65%20%2B%20T_Rsin80)
![514 = 0.906T_L + 0.985T_R](https://tex.z-dn.net/?f=514%20%3D%200.906T_L%20%2B%200.985T_R)
Part a)
so from above equations we have
![514 = 0.906T_L + 0.985(\frac{T_L}{0.41})](https://tex.z-dn.net/?f=514%20%3D%200.906T_L%20%2B%200.985%28%5Cfrac%7BT_L%7D%7B0.41%7D%29)
![514 = 3.3 T_L](https://tex.z-dn.net/?f=514%20%3D%203.3%20T_L)
![T_L = 155.4 N](https://tex.z-dn.net/?f=T_L%20%3D%20155.4%20N)
Part b)
Now for tension in right string we will have
![T_R = \frac{T_L}{0.41}](https://tex.z-dn.net/?f=T_R%20%3D%20%5Cfrac%7BT_L%7D%7B0.41%7D)
![T_R = 379 N](https://tex.z-dn.net/?f=T_R%20%3D%20379%20N)
overuse of a muscle Answer:
Explanation:
Answer :Scientific Definition of Inference
In science, there are a few different types of inferences, but in general an inference is: “An educated guess made through observation.” You might use these inferences to share a potential reason why something happens or how it happens.
Explanation:
Answer:
d₁ = 0.29 in
d₂ = 0.505 in
Explanation:
Given:
T = 1500 lbf in
L = 10 in
x = 0.5 L = 5 in
![T_{1} =\frac{T(L-x)}{L} =\frac{1500*(10-5)}{10} =750lbfin](https://tex.z-dn.net/?f=T_%7B1%7D%20%3D%5Cfrac%7BT%28L-x%29%7D%7BL%7D%20%3D%5Cfrac%7B1500%2A%2810-5%29%7D%7B10%7D%20%3D750lbfin)
First case: T = T₁ + T₂
T₂ = T - T₁ = 1500 - 750 = 750 lbf in
If the shafts are in series:
θ = θ₁ + θ₂
θ = ((T₁ * L₁)/GJ) + ((T₂ * L₂)/GJ)
Second case: If d₁ ≠ d₂
θ = ((T₁ * L₁)/GJ₁) + ((T₂ * L₂)/GJ₂) = 0 (eq. 1)
t₁ = t₂
(eq. 2)
T₁ + T₂ = 1500 (eq. 3)
θ₁ first case = θ₁ second case
Replacing:
![\frac{750*5}{G(\frac{\pi }{32})*0.5^{4} } =\frac{T_{1}*3.7 }{G(\frac{\pi }{32})*d_{1} ^{4} }\\T_{1} =16216d_{1} ^{4}](https://tex.z-dn.net/?f=%5Cfrac%7B750%2A5%7D%7BG%28%5Cfrac%7B%5Cpi%20%7D%7B32%7D%29%2A0.5%5E%7B4%7D%20%20%7D%20%3D%5Cfrac%7BT_%7B1%7D%2A3.7%20%7D%7BG%28%5Cfrac%7B%5Cpi%20%7D%7B32%7D%29%2Ad_%7B1%7D%20%5E%7B4%7D%20%20%7D%5C%5CT_%7B1%7D%20%3D16216d_%7B1%7D%20%5E%7B4%7D)
The same way to θ₂:
![\frac{750*5}{G(\frac{\pi }{32})*0.5^{4} } =\frac{T_{2}*6.3 }{G(\frac{\pi }{32})*d_{2} ^{4} } \\T_{2} =9523.8d_{2} ^{4}](https://tex.z-dn.net/?f=%5Cfrac%7B750%2A5%7D%7BG%28%5Cfrac%7B%5Cpi%20%7D%7B32%7D%29%2A0.5%5E%7B4%7D%20%20%7D%20%3D%5Cfrac%7BT_%7B2%7D%2A6.3%20%7D%7BG%28%5Cfrac%7B%5Cpi%20%7D%7B32%7D%29%2Ad_%7B2%7D%20%5E%7B4%7D%20%20%7D%20%5C%5CT_%7B2%7D%20%3D9523.8d_%7B2%7D%20%5E%7B4%7D)
From equation 2, we have:
d₁ = 0.587 * d₂
From equation 3, we have:
d₂ = 0.505 in
d₁ = 0.29 in