Velocity would be an answer
Answer:
The frequency heard by the motorist is 4313.2 Hz.
Explanation:
let f1 be the frequency emited by the police car and f2 be the frequency heard by the motorist, let v1 be the speed of the police car and v2 be the speed of the motorist and v = 343 m/s be the speed of sound.
because the police car is moving towards the motorist at a higher speed, then the motorist will hear a increasing frequency and according to Dopper effect, that frequency is given by:
f1 = [(v + v2/(v - v1))]×(f2)
= [( 343 + 30)/(343 - 36)]×(3550)
= 4313.2 Hz
Therefore, the frequency heard by the motorist is 4313.2 Hz.
Difference exists mainly in the label for x axis.
Explanation:
- Shapes of waveform and vibration graphs are same.
- Vibration graphs shows the particle at a single location in the path of the wave when time passes.
- Waveform graphs shows the particle at multiple locations at a single moment of time.
Answer:
it started to move a 1 second
Answer:
The answer of this is question is A.