No math is needed to explain this. All that you need to know is that the can (4°C) is in your hand (37°C).
Entropy will always move toward being balanced. Never will you find a lake in which half of it is 1°C and the other half is 70°C; it will be equal throughout.
Remember that "cold" doesn't exist. What we describe to be cold is actually a lack of heat.
So, by applying the two ideas above, it can be concluded that:
Since your hand is warmer than the can, the heat from your hand will be transferred to the can in order to reach an equal temperature.
The Lewis structures in which there are no formal charges is the most stable. Hence, structure (b) is the more stable form of FNO2.
<h3>Lewis structure</h3>
The question is incomplete but I will try to answer you as much as I can. Now the equation is missing hence we can't numerically caculate the enthalpy chnage of the reaction from bond energies. However, we can do this using the formula; Σbond energy of reactants - bond energy of products.
Concerning the Lewis structures of FNO2, the most stable structure is structure (b) as shown in the image attached where the atoms have no formal charges.
Learn more about Lewis structure:brainly.com/question/4144781
Answer:
Explanation
Let, Wavelength = W,
Given, frequency (f) = 50 Hz, wave velocity (V) = 342 m/s
We know, V = f × W
=> 342 = 50 × W
=> W = 342/50 metre
=> W = 6.84 metre
You can start by writing out the molecular formula of each molecule.
Aluminum (Al 3+) Phosphate (PO4 3-)
AlPO4
Nickel II (Ni 2+) sulfide (S 2-)
NiS
Aluminum Sulfide
Al2S3
Nickel Phosphate
Ni3(PO4)2
If you’re wondering, we get those charges by looking at the periodic table. The metals usually have a + charge based on their group number. The nonmetals usually - charge egual to 8 - their group number.
You then balance the ions by flipping the charges, dropping the signs, and adding them in as subscripts.
Now we can put it into an equation
AlPO4 + NiS —-> Al2S3 + Ni3(PO4)2
Balance by adding coefficients
2 AlPO4 + 3 NiS —-> Al2S3 + Ni3(PO4)2