The anti-lock braking system (ABS) is a car component that enables the driver to execute complex maneuvers. Furthermore, it allows shifting the position of your car when driving on highways because of its ability to "maintain traction." It also can decrease the kinetic energy of your car when you want to make it decelerated.
E = hf
E = 6.63* 10 ⁻³⁴ * 7.24* 10¹⁴
<span>E = 4.80012 × 10⁻¹⁹ J</span>
The correct answer for this question is 6m/s. I hope this helps.
Answer:
The y-axis should be labelled as W in Newtons (kg·m/s²)
Explanation:
The given data is presented here as follows;
Mass (kg)
Newtons (kg·m/s²)
3.2
31.381
4.6
45.1111
6.1
59.821
7.4
72.569
9
89.241
10.4
101.989
10.9
106.892
From the table, it can be seen that there is a nearly linear relationship between the amount of Newtons and the mass, as the slope of the data has a relatively constant slope
Therefore, the data can be said to be a function of Weight in Newtons to the mass in kilograms such that the weight depends on the mass as follows;
W(m) in Newtons = Mass, m in kg × g
Where;
g is the constant of proportionality
Therefore, the y-axis component which is the dependent variable is the function, W(m) = Weight of the body while the x-axis component which is the independent variable is the mass. m
The graph of the data is created with Microsoft Excel give the slope which is the constant of proportionality, g = 9.8379, which is the acceleration due to gravity g ≈ 9.8 m/s²
We therefore label the y-axis as W in Newtons (kg·m/s²)
Here as we know that there is no loss of energy
so we can say that maximum kinetic energy will become gravitational potential energy at its maximum height
So here we have

here we have
v = 20 m/s
m = 8000 kg
now from above equation we have



so maximum height is 20.4 m