This question involves the concepts of Wein's displacement law and characteristic wavelength.
The blackbody temperature will be "3.22 x 10⁵ k".
<h3>WEIN'S DISPLACEMENT LAW</h3>
According to Wein's displacement law,

where,
= characteristic wavelength = 9 μm = 9 x 10⁻⁹ m- T = temperature = ?
- c = Wein's displacment constant = 2.897 x 10⁻³ m.k
Therefore,

T = 3.22 x 10⁵ k
Learn more about characteristic wavelength here:
brainly.com/question/14650107
Frequency= velocity of light/wave length
Fr= 3×10^8/510×10^-9
Frequwency=5.88×10^14 Hz
Answer: Use Question cove you can get it faster you can get the answer faster! ;) hope this helps ;) but yeah use that and answer is done right away
Explanation: HOPE THIS HELPSS!! ;))
Answer:
Friction always acts in the direction opposing motion. This means if friction is present, it counteracts and cancels some of the force causing the motion (if the object is being accelerated).
Explanation:
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other.
Answer:
Increases
Explanation:
Because acceleration goes higher