Answer:
1. The change in temperature of the material.
2. The length of the material.
3. The type of material.
Explanation:
The term linear expansion is defined as the increase in length of any conductor when there is a change in temperature. The new length of any wire or rod is given by :

is the initial length of the rod
is the coefficient of linear expansion
is the change in temperature
It is clear that the linear expansion of a material depends on :
1. The change in temperature of the material.
2. The length of the material.
3. The type of material.
So, all options are correct.
<span>The higher the value of the coefficient of friction, the more the resistance to sliding. The answer is the more the resistance to sliding. The</span> coefficient of friction<span> is a measure of how easily one object moves over another object. It is a ratio of: Force to move the object / weight of the object (or Normal Force)</span>
Answer:
|F| = 393750 N
Explanation:
Given that,
Total mass of the train, m = 750000 kg
Initial speed, u = 84 m/s
Final speed, v = 42 m/s
Time, t = 80 s
We need to find the net force acting on the train. The formula for force is given by :
F = ma

So, the magnitude of net force is 393750 N.
The answer to this question would be: <span>A) animals that live in deserts
</span>Desert temperature is high, especially in the day, <span>An animal that lives in the desert needs to adapt to the high temperature either by reducing the heat or by increasing heat loss. By becoming nocturnal, the animal also able to evade the sunlight so it was less exposed to the heat.
Unlike other option, the desert is lacking water. Desert is mostly dry and water would be a resource that hard to find. In this case, k</span><span>idneys adapted to check water loss would be a great help</span>
Answer:
The "solid force"? ... The direction of the force always seems to be coming out of the solid surface. A direction which is perpendicular to the plane of a surface is said to be normal. The force that a solid surface exerts on anything in the normal direction is called the normal force.
Explanation:
i think i hope this helps