Answer:
P = 7.28 N.s
Explanation:
given,
initial momentum of cue ball in x- direction,P₁ = 9 N.s
momentum of nine ball in x- direction, P₂ = 2 N.s
momentum in perpendicular direction i.e. y - direction,P'₂ = 2 N.s
momentum of the cue after collision = ?
using conservation of momentum
in x- direction
P₁ + p = x + P₂
p is the initial momentum of the nine balls which is equal to zero.
9 + 0 = x + 2
x = 7 N.s
momentum in x-direction.
equating along y-direction
P'₁ + p = y + P'₂
0 + 0 = y + 2
y = -2 N.s
the momentum of the cue ball after collision is equal to resultant of the momentum .


P = 7.28 N.s
the momentum of the cue ball after collision is equal to P = 7.28 N.s
Answer:
because it is an ice that is why it melt
Answer:
Explanation:
I will GUESS that we're supposed to be looking at a plot of a position in time.
IF that is the case.
THEN the answer would be Point B because it has the steepest slope.
Answer:
No.
Explanation:
Hot spots don't appear at the barriers of tectonic plates, instead, they originate at hot centres known as mantle plumes. Mantle plumes exist below the tectonic plates and may develop a string of volcanoes on the Earths surface.
Answer:
The magnitude of the second charge is
or 
Explanation:
The work done in bringing a charged particle from one point to another in the presence of some electric field is equal to the change in the electric potential energy of the charge in moving from one point to another.
The electric potential energy of some charge
at a point in the electric field of another charge
is given by the product of the amount of charge
and electric potential at that point due to the charge
.

The electric potential at that point is given by

where
is the Coulomb's constant.
Therefore,

Now, We have given two charges
and
, whose value is to be found.
When the two charges are infinitely dar apart, the electric potential energy of the system is given by

When the coordinates of position of the two charges are

The distance between the two charges is given by

The electric potential energy of the charges in this configuration is given by

The change in the electric potential energy of the system is equal to the work done to bring the system from inifinitely far apart position to given configuration.
Therefore,
