Answer:
t = 5.05 s
Explanation:
This is a kinetic problem.
a) to solve it we must fix a reference system, let's use a fixed system on the floor where the height is 0 m
b) in this system the equations of motion are
y = v₀ t + ½ g t²
where v₀ is the initial velocity that is v₀ = 0 and g is the acceleration of gravity that always points towards the center of the Earth
e) y = 0 + ½ g t²
t = √ (2y / g)
t = √(2 125 / 9.8)
t = 5.05 s
Refer to the diagram shown below.
For horizontal equilibrium,
T₃ cos38 = T₂ cos 50
0.788 T₃ = 0.6428 T₂
T₃ = 0.8157 T₂ (1)
For vertical equilibrium,
T₂ sin 50 + T₃ sin 38 = 430
0.766 T₂ + 0.6157 T₃ = 430
1.2441 T₂ + T₃ = 698.392 (2)
Substitute (1) into (2).
(1.2441 + 0.8157) T₂ = 698.392
T₂ = 339.058 N
T₃ = 0.8157(399.058) = 276.571 N
Answer:
T₂ = 339.06 N
T₃ = 276.57 N
The absolute magnitude of the star would be +5.
Answer:
F' = F/16
Explanation:
The gravitational force between masses is given by :

If the distance between the center of two objects is quadrupled, r' = 4r
New force will be :

So, the new force will change by a factor of 16.