Answer:
a) X = 17.64 m
b) X = 17.64 + 4∆t^2 + 16.8∆t
c) Velocity = lim(∆t→0)〖∆X/∆t〗 = 16.8 m/s
Explanation:
a) The position at t = 2.10s is:
X = 4t^2
X = 4(2.10)^2
X = 17.64 m
b) The position at t = 2.10 + ∆t s will be:
X = 4(2.10 + ∆t)^2
X = 17.64 + 4∆t^2 + 16.8∆t m
c) ∆X is the difference between position at t = 2.10s and t = 2.10 + ∆t so,
∆X= 4∆t^2 + 16.8∆t
Divide by ∆t on both sides:
∆X/∆t = 4∆t + 16.8
Taking the limit as ∆t approaches to zero we get:
Velocity =lim(∆t→0)〖∆X/∆t〗 = 4(0) + 16.8
Velocity = 16.8 m/s
PART a)
As we know that gravitational potential energy is given by the formula

here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance
Vas happenin!
The third one makes no since because the clouds carry the rain. It isn’t always cold when it’s going to rain
The fourth one is a good one
The second one again it’s not always cold when it’s raining
The first one could be it also
Hmmm I would go with the last one
Sorry if it’s wrong
<h2>
Power is 11 W</h2>
Explanation:
Power = Work ÷ Time
Work = Force x Displacement
Force = 22 N
Displacement = 3 m
Time = 6 seconds
Substituting
Work = Force x Displacement
Work = 22 x 3 = 66 J
Power = Work ÷ Time
Power = 66 ÷ 6
Power = 11 W
Power is 11 W