Answer:
497.00977 N
3742514.97005
Explanation:
= Density of water = 1000 kg/m³
C = Drag coefficient = 0.09
v = Velocity of dolphin = 7.5 m/s
r = Radius of bottlenose dolphin = 0.5/2 = 0.25 m
A = Area
Drag force

The drag force on the dolphin's nose is 497.00977 N
at 20°C
= Dynamic viscosity = 
Reynold's Number

The Reynolds number is 3742514.97005
Answer: 71.93 *10^3 N/C
Explanation: In order to calculate the electric field from long wire we have to use the Gaussian law, this is:
∫E*dr=Q inside/εo Q inside is given by: λ*L then,
E*2*π*r*L=λ*L/εo
E= λ/(2*π*εo*r)= 4* 10^-6/(2*3.1415*8.85*10^-12*2 )= 71.93 * 10^3 N/C
Answer:
The net torque is zero
Explanation:
Let's assume that the dipole is compose of two equal but oposite charges e, and it cam be represented by a rod with one end having a charge e and the other end with a charge of -e. Notice that the dipole is parallel to the electric field thus the force felt by both of the charges will be parallel to the electric field. This means that there will be no components of the forces that are perpendicular to the rod which is a requirement for it to have a torque.
Answer:
Proportional
Explanation:
The conditions that must be met to produce SHM are;
-The restoring force must be proportional to the displacement and act opposite to the direction of motion with no drag forces or friction.
- The frequency of oscillation does not depend on the amplitude.