In a saturated solution, extra solid X would remain solid, dissolve in an unsaturated solution, and crystallize in a supersaturated one.
A solution is said to be saturated when there is a maximum amount of solute present that has been dissolved in the solvent. As a result, the system is in an equilibrium between the dissolved and undissolved solutes: A solution is considered to be unsaturated if the solute concentration is less than the equilibrium solubility. A supersaturated solution is one that has more solute than is necessary to generate a saturated solution at a given temperature.
Learn more about Supersaturated here-
brainly.com/question/16817894
#SPJ4
Answer : The correct option is, (b) +0.799 V
Solution :
The values of standard reduction electrode potential of the cell are:
![E^0_{[H^{+}/H_2]}=+0.00V](https://tex.z-dn.net/?f=E%5E0_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D%3D%2B0.00V)
![E^0_{[Ag^{+}/Ag]}=+0.799V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.799V)
From the cell representation we conclude that, the hydrogen (H) undergoes oxidation by loss of electrons and thus act as anode. Silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
The half reaction will be:
Reaction at anode (oxidation) :
Reaction at cathode (reduction) :
The balanced cell reaction will be,

Now we have to calculate the standard electrode potential of the cell.

![E^o_{cell}=E^o_{[Ag^{+}/Ag]}-E^o_{[H^{+}/H_2]}](https://tex.z-dn.net/?f=E%5Eo_%7Bcell%7D%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BH%5E%7B%2B%7D%2FH_2%5D%7D)

Therefore, the standard cell potential will be +0.799 V
Answer:
Explanation: Q1 = mc(ice) ΔT (ice warms)
Q2 = ms (ice melts)
Q3 = mc((water) ΔT (water warms)
Q4 = mr (water boils)
Q5 = mc(vapour)ΔT
The seasons. This is because when Earth is on an angle, different parts of the world get different amounts of heat, making temperatures different, and therefore changing the environment.