Answer:
Maximum height, h = 10 m
Explanation:
It is given that,
Mass of golf ball, m = 45 g = 0.045 kg
The ball comes down on a tree root and bounces straight up with an initial speed of 14.0 m/s.
We need to find the height the ball will rise after the bounce. It is based on the conservation of energy such that,

h is maximum height raised by the ball

So, the ball will raised to a height of 10 meters.
Answer:
The metalloids are located on the right side of the periodic table in a "step-like" arrangement.
All of the possible metalloids are:
boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), and polonium (Po)
Answer:
80m
Explanation:
u=20,R=?,sin theta=1,g=10
R=u²sin2theta/g
R=20²x2/10
R=400x2=800/10
R=80m
<span>The metric
system is the oldest name for the international system of units. The answer is <u>a.
True. </u>SI unit or the international systems of units are based on seven
basic units; the meter, kilogram, second, ampere, Kelvin, candela and mole. All
of these basic units are divided into multiples by a power of ten. For example
in meters, 1 meter is equal to: 1000 millimeter, 100 centimeter, 10 decimeter,
0.1 decameter, 0.01 hectometer, 0.001 kilometer and so on and so forth.</span>
A 59 kg sprinter, starting from rest, runs 47 m in 7.0 s at constant acceleration.?
What is the sprinter's power output at 2.0 s, 4.0 s, and 6.0 s?
Instantaneous Power is the force times velocity
P = Fv
Because the acceleration is constant, the force will be constant as well
F = ma
P = mav
for constant acceleration, the velocity at each time is found using
v = at
P = ma(at) = ma²t
find the acceleration using kinematic equation
s = ½at²
a = 2s/t²
a = 2(47) / 7.0²
a = 1.918 m/s²
P(2.0) = 59(1.918²)2.0 = 434.25 W = 0.43 kW
P(4.0) = 59(1.918²)4.0 = 868.51 W = 0.87 kW
P(6.0) = 59(1.918²)6.0 = 1302.76 W = 1.3 kW
I hope this helped.