Answer:
0.82 m
Explanation:
We are given that
Weight,
=225 N
Length,l=5 m
d=1.1 m
We have to find the distance x for which person weighs 385 N walk on the overhanging part of the plank before it just begins to tip.
Half length=


When system in equilibrium then




Answer:
4.3 m/s
Explanation:
Using conservation of momentum, assume that the collision is elastic and that the 3.0 g ball stuck with the carton
3.0 g = 3 / 1000 = 0.003 kg = m₁
40 g = 40 / 1000 = 0.04 kg = m₂, u₂ = 0 since the body is stationary and v = 0.3m/s
m₁u₁ + m₂u₂ = v ( m₁ + m₂)
0.003 u₁ = 0.30 ( 0.003 + 0.04) = 0.0129
u₁ = 0.0129 / 0.003 = 4.3 m/s

In order to find it's square root, we could make it into two square roots.

Let us find the square roots of both radicals seprately.

Each pair of a number inside square root gives a number out .



Therefore,


I believe the answer would be "Different Colors," hope this helps :)
Answer:
a) 1.6*10^6 V
b) 13.35*10^6 V
Explanation:
The electric potential at origin is the sum of the contribution of the two charges. You use the following formula:
(1)
q1 = 3.90µC = 3.90*10^-6 C
q2 = -2.4µC = -2.4*10^-6 C
r1 = 1.25 cm = 0.0125 m
r2 = -1.80 cm = -0.018 m
k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
You replace all the parameters in the equation (1):
![V=k[\frac{q_1}{r_1}+\frac{q_2}{r_2}]\\\\V=(8.98*10^9Nm^2/C^2)[\frac{3.90*10^{-6}C}{0.0125m}+\frac{-2.4*10^{-6}C}{0.018m}]=1.6*10^6V](https://tex.z-dn.net/?f=V%3Dk%5B%5Cfrac%7Bq_1%7D%7Br_1%7D%2B%5Cfrac%7Bq_2%7D%7Br_2%7D%5D%5C%5C%5C%5CV%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5B%5Cfrac%7B3.90%2A10%5E%7B-6%7DC%7D%7B0.0125m%7D%2B%5Cfrac%7B-2.4%2A10%5E%7B-6%7DC%7D%7B0.018m%7D%5D%3D1.6%2A10%5E6V)
hence, the total electric potential is approximately 1.6*10^6 V
b) For the coordinate (1.50 cm , 0) = (0.015 m, 0) you have:
r1 = 0.0150m - 0.0125m = 0.0025m
r2= 0.015m + 0.018m = 0.033m
Then, you replace in the equation (1):
![V=(8.98*10^9Nm^2/C^2)[\frac{3.90*10^{-6}C}{0.0025m}+\frac{-2.4*10^{-6}C}{0.033m}]=13.35*10^6V](https://tex.z-dn.net/?f=V%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5B%5Cfrac%7B3.90%2A10%5E%7B-6%7DC%7D%7B0.0025m%7D%2B%5Cfrac%7B-2.4%2A10%5E%7B-6%7DC%7D%7B0.033m%7D%5D%3D13.35%2A10%5E6V)
hence, for y = 1.50cm you obtain V = 13.35*10^6 V