<h3><u>Answer;</u></h3>
Are moving up and down.
As a transverse wave travels through a rope from left to right, the parts of the rope <u>are moving up and down</u>.
<h3><u>Explanation;</u></h3>
- Transverse waves occur when a disturbance causes oscillations perpendicular to the propagation, that is the direction of energy transfer.
- <em><u>Particles of the medium move perpendicular to the direction the transverse wave itself is moving. For example, if the wave is moving to the right, the particles of the medium are moving up and down.</u></em>
- <em><u>Therefore, as a transverse wave travels through a rope from left to right, the parts of the rope are moving up and down.</u></em>
Answer:
the height of the potential energy is 3,200 J
Explanation:
The computation of the kinetic energy is shown below:
Kinetic energy = 1 ÷ 2 × mass × velocity^2
= 1 ÷ 2 × 4 kg × 40 m/s^2
= 3,200 J
Hence the height of the potential energy is 3,200 J
Since Speed, V = Distance/Time
Average speed = Total Distance/Total Time
From the given data, Total Distance = 100 + 30 + 75 miles
and Total Time = 2 + 1 + 1 hours
Average Speed = 205/4
Average Speed = 51.25 mph ( or 51mph to the nearest whole number)