Answer: 0.642mm
Explanation: F= force = 5.2×10^-16 N,
v = velocity of electron = 1.2×10^7 m/s,
m = mass of electron = 9.11×10^-31 kg.
We will assume the motion of the object to be of a constant acceleration, hence newton's laws of motion is applicable.
Recall that f = ma.
Where a = acceleration
This acceleration of vertical because it occurred when the object deflected.
5.2×10^-16 = 9.11×10^-31 (ay)
ay = 5.2×10^-16 / 9.11×10^-31
ay = 5.71×10^14 m/s²
For the horizontal motion, x = vt
Where x = horizontal distance = 0.019m and v is the velocity = 1.2×10^7 m/s,
By substituting the parameters, we have that
0.019 = 1.27×10^7 × t
t = 0.019 / 1.27 × 10^7
t = 1.5×10^-9 s
The vertical distance (y) is gotten by using the formulae below
y = ut + at²/2
but u = 0
y = at²/2
y = 5.71×10^14 × (1.5×10^-9)²/2
y = 0.00128475/2
y = 0.000642m = 0.642mm
Answer:
Tundra Biome
Explanation:
Permafrost is a type of soil that is frozen all year round. It consists of rocks, soils and ice. The ice or frost holds the earth materials together.
The tundra biome lies below the arctic circle close to the north pole. Most of the earth here is predominantly frozen all year round. A layer of glacier covers the surface and a deep lying layer of permafrost follows suit.
Some mountain tops capped with ice shows this tundra features.
Most tundras are termed cold deserts as they have little to no precipitation all year round. There is absence of vegetation cover as a result of low growing season of the plants.
Answer:
269 m
45 m/s
-58.6 m/s
Explanation:
Part 1
First, find the time it takes for the package to land. Take the upward direction to be positive.
Given (in the y direction):
Δy = -175 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(-175 m) = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 5.98 s
Next, find the horizontal distance traveled in that time:
Given (in the x direction):
v₀ = 45 m/s
a = 0 m/s²
t = 5.98 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (45 m/s) (5.98 s) + ½ (0 m/s²) (5.98 s)²
Δx = 269 m
Part 2
Given (in the x direction):
v₀ = 45 m/s
a = 0 m/s²
t = 5.98 s
Find: v
v = at + v₀
v = (0 m/s²) (5.98 s) + (45 m/s
v = 45 m/s
Part 3
Given (in the y direction):
Δy = -175 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: v
v² = v₀² + 2aΔy
v² = (0 m/s)² + 2 (-9.8 m/s²) (-175 m)
v = -58.6 m/s
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.
According to wikipedia <em>a mid-ocean ridge is an underwater mountains system formed by tectonic plates.
</em>Happy studying!<em>
</em>