Answer:
No
Explanation:
Unless there are other external forces, this will never be true. Because according to energy conservation, potential energy will be converted to kinetic energy as the ball falls down (so it loses height and gain speed). And vice versa, kinetic to potential when it bounces back. So the potential energy after must be the same (or smaller if losing heat to external environment), so it can only get the the same height or less, but not more.
Answer: a) Case 2 b) Case 1
Explanation:
a) By definition, the magnitude of a torque, referred to a given point, is expressed as the product of the force that causes the torque, times the perpendicular distance to the reference point.
If we assume that the only force acting on the arm is the weight of the arm, and that this is concentrated in a point in the center of it (taking the arm as a solid bar with the center of mass at the mid-point), clearly the torque will be the greatest when the force be exactly perpendicular, which is the case of the arm placed straight out parallel to the ground (Case 2).
b) As the torque and the angular acceleration are directly proportional each other (being the rotational inertia the proportionality constant) the angular acceleration will be maximum when torque be maximum also, which is the case that the arm begins to swim, due to the perpendicular distance to the shoulder is the maximum possible (Case 1).
Answer:
lhchccyohchocohchocoyxtidts8ts58d85dtitxicyi
A. reactants
B. subscript
C. coefficient
D. products