The horizontal speed is going to be the cosine of the given speed, therefore, the horizontal speed is 19.15 m/s. To find the time, divide the 22 m distance by the velocity. This results in 1.131 seconds, which is in between C and D.
The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1
Yes it is! It would be SWE vs. DEN
<span>Determined by the distance between objects and the difference in mass between the objects is gravity or gravitational force. Gravity is dependent on those two factors, and is what causes objects on Earth to stay on the ground. It is defined as the "pull" that an object with mass exerts on another object that makes the latter gravitate towards the former. Weight is the measure of gravitational force exerted by a mass.</span>
Answer:
(a) v1 = 21.6 m/s
(b) t = 51.25 s
Explanation:
Use kinematics equation
v1 = v0 + at
Given
v0 = 0 = initial velocity
a = 0.8 m/s^2 = acceleration
(a) t = 27 seconds
v1 = v0 + at = 0 + 0.8*27 = 21.6 m/s
(b) v1 = 41 m/s
v1 = v0 + at
solve for t
t = (v1-v0)/a = (41-0)/0.8 = 51.25 s