Answer:
The new force is 1/4 of the previous force.
Explanation:
Given
---- 
--- 
Required
Determine the new force
Let the two particles be q1 and q2.
The initial force F1 is:
--- Coulomb's law
Substitute 2 for r1


The new force (F2) is

Substitute 4 for r2



Substitute 


The new force is 1/4 of the previous force.
We have the equation of motion
, where s is the displacement, a is the acceleration, u is the initial velocity and t is the time taken.
Here s = 300 m, u = 0 m/s, a = 9.81
Substituting

Now we have v = u+at, where v is the final velocity
Here u = 0 m/s, a= 9.81
and t = 7.82 seconds
Substituting
v = 0+9.8*7.82 = 76.68 m/s
The speed with which the penny strikes the ground = 76.68 m/s.
Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Explanation:
The momentum of the three objects are as follow :
11 kg-m/s, -65 kg-m/s and -100 kg-m/s
Before collision, the momentum of the system is :

After collison, they move together. It means it is a case of inelastic collision. In this type of collision, the momentum of the system remains conserved.
It would mean that, after collision, momentum of the system is equal to the initial momentum.
Hence, final momentum = -154 kg-m/s.
first off lemme just say this is really easy man, just look at the directions
Blank #1: -23
Blank #2: 23