Answer: The answer is A. The company is trying to transfer intellectual capital to a knowledge management system
Answer:
Explanation:
Given
Temperature of solid 
Einstein Temperature 
Heat Capacity in the Einstein model is given by
![C_v=3R\left [ \frac{T_E}{T}\right ]^2\frac{e^{\frac{T_E}{T}}}{\left ( e^{\frac{T_E}{T}}-1\right )^2}](https://tex.z-dn.net/?f=C_v%3D3R%5Cleft%20%5B%20%5Cfrac%7BT_E%7D%7BT%7D%5Cright%20%5D%5E2%5Cfrac%7Be%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D%7D%7B%5Cleft%20%28%20e%5E%7B%5Cfrac%7BT_E%7D%7BT%7D%7D-1%5Cright%20%29%5E2%7D)

Substitute the values


Answer:
a) P ≥ 22.164 Kips
b) Q = 5.4 Kips
Explanation:
GIven
W = 18 Kips
μ₁ = 0.30
μ₂ = 0.60
a) P = ?
We get F₁ and F₂ as follows:
F₁ = μ₁*W = 0.30*18 Kips = 5.4 Kips
F₂ = μ₂*Nef = 0.6*Nef
Then, we apply
∑Fy = 0 (+↑)
Nef*Cos 12º - F₂*Sin 12º = W
⇒ Nef*Cos 12º - (0.6*Nef)*Sin 12º = 18
⇒ Nef = 21.09 Kips
Wedge moves if
P ≥ F₁ + F₂*Cos 12º + Nef*Sin 12º
⇒ P ≥ 5.4 Kips + 0.6*21.09 Kips*Cos 12º + 21.09 Kips*Sin 12º
⇒ P ≥ 22.164 Kips
b) For the static equilibrium of base plate
Q = F₁ = 5.4 Kips
We can see the pic shown in order to understand the question.
Answer:
± 0.003 ft
Explanation:
Since our distance is 10,000 ft and we need to use a full tape measure of 100 ft. We find that 10,000 = 100 × 100.
Let L' = our distance and L = our tape measure
So, L' = 100L
Now by error determination ΔL' = 100ΔL
Now ΔL' = ± 0.30 ft
ΔL = ΔL'/100
= ± 0.30 ft/100
= ± 0.003 ft
So, the maxim error per tape is ± 0.003 ft