No clue brother this one diff kit
<span>
the horizontal velocity would be equal to
Vh = sin (40) /60
= 0.74 * 60
= 44
</span>
the Vertical velocity would be equal to
<span>Vv = cos(40) * 60
=40</span>
Answer: friction has no role to play in this case. because friction usually occurs between to parts which come in contacts. examples (a)our joints in the human body (b)two mechanical parts (shafts).
Explanation:
However what this topic relates to is gravity. The pebble and paper both weigh one gram, but have different density this is the sole reason why if both are drop from same height the pebble would reach the ground faster than the paper because it is more denser. unlike the paper with a lesser density which would take a longer time to reach the ground.
If I’m understanding this. Th reason why the ball can resist gravity’s pull is because the force used to throw it up was greater than gravity’s pull on it. BTW, gravity’s pull is 9.8m/s. So it would have to be greater than that
Answer:
The two objects will collide with the same position vector for all three components at exactly t = 4 s
Explanation:
For two particles starting out at the same time to collide, their position Vector's at the time of collision must be exactly the same.
So, at the collision point, position vector of object 1 is equated to that of object 2.
r₁ = (t², 13t-36, t²)
r₂ = (7t-12, t², 5t-4)
At he point of collision
t² = 7t - 12
t² - 7t + 12 = 0
t² - 4t - 3t + 12 = 0
t(t - 4) - 3(t - 4) = 0
t = 3s or t = 4s
13t - 36 = t²
t² - 13t + 36 = 0
t² - 4t - 9t + 36 = 0
t(t - 4) - 9(t - 4) = 0
t = 9s or 4s
t² = 5t - 4
t² - 5t + 4 = 0
t² - 4t - t + 4 = 0
t(t - 4) - 1(t - 4) = 0
t = 1s or t = 4s
The three components intersect at other times, but at t = 4s, they all intersect at the same time! Meaning that, at this point the two objects are at the same place with the same position vector at that time.