Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.
<span>F = ma
</span>Ff = μ*Fn
<span>Fn = Fw
</span>Fw = mg
<span>So we have: </span>
<span>Ff = μmg </span>
<span>And </span>
<span>Ff = ma </span>
<span>So... </span>
<span>μmg = ma </span><span> </span>
<span>μg = a </span>
<span>And we can solve for the acceleration: </span>
<span>(0.15)(9.81 m/s²) = a </span>
<span>a = 1.47 m/s² </span>
Answer:
counterclockwise

Explanation:
= Small drive wheel radius = 2.2 cm
= Angular acceleration of the small drive wheel = 
= Radius of pottery wheel = 28 cm
= Angular acceleration of pottery wheel
As the linear acceleration of the system is conserved we have

The angular acceleration of the pottery wheel is
.
The rubber drive wheel is rotating in clockwise direction so the pottery wheel will rotate counterclockwise.
= Initial angular velocity = 0
= Final angular velocity = 
t = Time taken
From the kinematic equations of linear motion we have

The time it takes the pottery wheel to reach the required speed is 
Answer:
Explanation:
given
initial velocity u = 4.45m/s
Height = 0.6m
g = 9.8m/s²
Required
final velocity v
Using the equation of motion;
v² = u²-2gH (upward motion of the fish makes g to be negative)
v² = 4.45²-2(9.8)(0.6)
v² = 19.8025-11.76
v² = 8.0425
v = 2.84 m/s
Hence the speed of the fish as it passes a point 0.6 m above the water is 2.84m/s
To get the time, we will use the formula
v = u - gt
2.84 = 4.45 - 9.8t
2.84-4.45 = -9.8t
-1.61 = -9.8t
t = 1.61/9.8
t = 0.164secs
Hence the time taken is 0.164secs