If no frictional work is considered, then the energy of the system (the driver at all positions is conserved.
Let
position 1 = initial height of the diver (h₁), together with the initial velocity (v₁).
position 2 = final height of the diver (h₂) and the final velocity (v₂).
The initial PE = mgh₁ and the initial KE = (1/2)mv₁²
where g = acceleration due to gravity,
m = mass of the diver.
Similarly, the final PE and KE are respectively mgh₂ and (1/2)mv₂².
PE in position 1 is converted into KE due to the loss in height from position 1 to position 2.
Therefore
(KE + PE) ₁ = (KE + PE)₂
Evaluate the given answers.
A) The total mechanical energy of the system increases.
FALSE
B) Potential energy can be converted into kinetic energy but not vice versa.
TRUE
C) (KE + PE)beginning = (KE + PE) end.
TRUE
D) All of the above.
FALSE
Thus, a swinging pendulum has its greatest kinetic energy and least potential energy in the vertical position, in which its speed is greatest and its height least; it has its least kinetic energy and greatest potential energy at the extremities of its swing, in which its speed is zero and its height is greatest.
Because your body heat might change the temperature
Answer: The charge on the particle is positive
While the magnitude = 0.00028C
Explanation:
Please find the attached file for the solution
Answer: C
Explanation: Density= mass/volume
if dividing by same volume, need to increase mass in order to increase density.
same as 4=8/2 vs 8=16/2
increase numerator= increase in answer