Real images can be either upright or inverted. Real images can be magnified in size, reduced in size or the same size as the object. Real images can be formed by concave, convex and plane mirrors. Real images are not virtual; thus you could never see them when sighting in a mirror.
The correct answer is<span> The earth casts a shadow on the moon
The Earth casts a shadow on the moon and that's why we can't see the remaining parts. The parts that we can see are what we call the lunar phases.</span>
Explanation:
It is given that,
length of steel wire, l = 0.75 m
Mass of the wire, m = 12 g = 0.012 kg
Fundamental frequency, f = 120 Hz
We need to find the mass of the anvil (m'). The fundamental frequency is given by :

v is the speed of the mass
Speed is given by :

is the mass per unit length,

T is the tension in the wire,



T = 518.4 N
Tension in the wire, T = m' g


m' = 52.89 kg
So, the mass of the anvil is 52.89 kg. Hence, this is the required solution.
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
The force that opposes motion to moving parts is F<span>riction</span><span>
Hope this helped!
</span>