Answer:
The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
Explanation:
Let suppose that spaceship is accelerated uniformly. A yard equals 0.914 meters. A feet equals 0.304 meters. If air viscosity and friction can be neglected, then acceleration (
), measured in meters per square second, is estimated by this kinematic formula:
(1)
Where:
- Travelled distance, measured in meters.
,
- Initial and final speeds of the spaceship, measured in meters.
If we know that
,
and
, then the acceleration experimented by the spaceship is:


The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
Answer:
Surface currents are controlled by three factors: global winds, the Coriolis effect, and continental deflections. surface create surface currents in the ocean. Different winds cause currents to flow in different directions. objects from a straight path due to the Earth's rotation.
Explanation:
Answer:
hhjjkkkksksksjskkskakakkskskksksksoao
Explanation:
hiiii look forward but I don't know how to do it
i believe the answer is 1.5e+6
hope this helps!
Answer:
<em>B) 1.0 × 10^5 V</em>
Explanation:
<u>Electric Potential Due To Point Charges
</u>
The electric potential produced from a point charge Q at a distance r from the charge is

The total electric potential for a system of point charges is equal to the sum of their individual potentials. This is a scalar sum, so direction is not relevant.
We must compute the total electric potential in the center of the square. We need to know the distance from all the corners to the center. The diagonal of the square is

where a is the length of the side.
The distance from any corner to the center is half the diagonal, thus


The total potential is

Where V1 and V2 are produced by the +4\mu C charges and V3 and V4 are produced by the two opposite charges of
. Since all the distances are equal, and the charges producing V3 and V4 are opposite, V3 and V4 cancel each other. We only need to compute V1 or V2, since they are equal, but they won't cancel.


The total potential is

