ANSWER

EXPLANATION
Parameters given:
Initial velocity, u = 26.2 m/s
When the vase reaches its maximum height, its velocity becomes 0 m/s. That is the final velocity.
We can now apply one of Newton's equations of motion to find the height:

where a = g = acceleration due to gravity = 9.8 m/s²
Therefore, we have that:

That is the height that the vase will reach.
Answer:
rpm
Explanation:
Given that rotational kinetic energy = 
Mass of the fly wheel (m) = 19.7 kg
Radius of the fly wheel (r) = 0.351 m
Moment of inertia (I) = 
Rotational K.E is illustrated as 





Since 1 rpm = 



The magnitude of the electric field at the proton's location is 10,437.5 N/C.
<h3>What the magnitude of the
electric field?</h3>
The size of the electric field is basically characterized as the power per charge on the test charge. On the off chance that the electric field strength is meant by the image E. Very much like gravity, electric fields work the same way. In any case, while gravity generally draws in, an electric field, then again, can either rebuff or draw in. By and large, the Electric Field submits to the super-position guideline. the all out Electric Field from various charges is equivalent to the amount of the electric fields from each charge separately. An electric field is the actual field that encompasses electrically charged particles and applies force on any remaining charged particles in the field, either drawing in or repulsing them.
Learn more about the magnitude of the electric field, visit
brainly.com/question/26898699
#SPJ4
Answer:

Explanation:
Given:
height above which the rock is thrown up, 
initial velocity of projection, 
let the gravity on the other planet be g'
The time taken by the rock to reach the top height on the exoplanet:
where:
final velocity at the top height = 0 
(-ve sign to indicate that acceleration acts opposite to the velocity)

The time taken by the rock to reach the top height on the earth:



Height reached by the rock above the point of throwing on the exoplanet:

where:
final velocity at the top height = 0 


Height reached by the rock above the point of throwing on the earth:



The time taken by the rock to fall from the highest point to the ground on the exoplanet:
(during falling it falls below the cliff)
here:
initial velocity= 0 



Similarly on earth:

Now the required time difference:


Answer:
15km
Explanation:
Given parameters:
Average speed = 60km/hr
Time taken = 15min
Unknown:
Distance = ?
Solution:
The distance traveled can de derived using the expression below;
Distance = Average speed x time taken
Now let us convert the time to hr;
60min = 1hr
15min =
= 0.25hr
Distance = 60km/hr x 0.25hr = 15km