The answer is 2.5 times heavier than on Earth !!
so the answer is C !!
Explanation:
Missing Details. Most models can't incorporate all the details of complex natural phenomena.
Most Are Approximations. Most models include some approximations as a convenient way to describe something
Explanation:
In a vacuum (no air resistance), it doesn't. All falling objects, regardless of mass, accelerate at the same rate.
However, when air resistance is taken into account, heavier objects indeed fall faster than lighter objects, provided they have the same shape and size. For example, a lead ball falls faster than a styrofoam ball.
To understand why, first look at what factors affect air resistance:
D = ½ρv²CA
where ρ is air density,
v is velocity,
C is drag coefficient,
and A is cross sectional area.
As falling objects accelerate, they eventually reach a maximum velocity where air resistance equals weight. This is called terminal velocity.
D = W
½ρv²CA = mg
v = √(2mg/(ρCA))
If we increase m while holding everything else constant, v increases. So two objects with the same size and shape but different masses will have different terminal velocities, with the heavier object falling faster.
Answer:
cart displacement is 66 m
Explanation:
given data
velocity = 5 m/s
acceleration = 2 m/s²
time = 6 s
to find out
What is the
magnitude of cart displacement
solution
we will apply here equation of motion to find displacement that is
s = ut + 0.5×at² .............1
here s id displacement and u is velocity and a is acceleration and time is t here
put all value in equation 1
s = ut + 0.5×at²
s = 5(6) + 0.5×(2)×6²
s = 66
so cart displacement is 66 m
Explanation:
hru3he. djehe isbs she house siege dbsus d beuh