1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ipn [44]
3 years ago
7

The generator in a purely inductive AC circuit has an angular frequency of 363 rad/s. If the maximum voltage is 169 V and the in

ductance is 0.0937 H, what is the rms current in the circuit
Physics
1 answer:
irga5000 [103]3 years ago
5 0

Answer:

The rms current in the circuit is 3.513 A

Explanation:

Given;

angular frequency of the inductor, ω = 363 rad/s

maximum voltage of the inductive AC, V₀ = 169 V

Inductance of the inductor, L = 0.0937 H

Inductive reactance is given by;

X_L = 2\pi f L= \omega L

X_L = 363 *0.0937\\\\X_L = 34.0131 \ ohms

The rms voltage is given by;

V_{rms} = \frac{V_o}{\sqrt{2} } \\\\V_{rms} =\frac{169}{\sqrt{2} } \\\\V_{rms} = 119.5 \ V

The rms current in the circuit is given by;

I_{rms} = \frac{V_{rms}}{X_L} \\\\I_{rms} = \frac{119.5}{34.0131} \\\\I_{rms} = 3.513 \ A

Therefore, the rms current in the circuit is 3.513 A

You might be interested in
An 92-kg football player traveling 5.0m/s in stopped in 10s by a tackler. What is the original kinetic energy of the player? Exp
Artemon [7]

Explanation:

It is given that,

Mass of the football player, m = 92 kg

Velocity of player, v = 5 m/s

Time taken, t = 10 s

(1) We need to find the original kinetic energy of the player. It is given by :

k=\dfrac{1}{2}mv^2

k=\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2

k = 1150  J

In two significant figure, k=1.2\times 10^3\ J

(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0

i.e. P=\dfrac{W}{t}=\dfrac{\Delta K}{t}

P=\dfrac{\dfrac{1}{2}\times (92\ kg)\times (5\ m/s)^2}{10\ s}

P = 115 watts

In two significant figures, P=1.2\times 10^2\ Watts

Hence, this is the required solution.  

6 0
2 years ago
______ is the best way to determine your own correct intensity level.
scZoUnD [109]
<span>Self-monitoring would be the best way to </span><span>determine your own correct intensity level. I hope this helps! <3
</span>
5 0
3 years ago
A runner traveling with an initial velocity of 1.1 m/s accelerates at a constant rate of 0.8 m/s2fora time of 2.0 s.(a).What is
pychu [463]

Answer:

The final velocity of the runner at the end of the given time is 2.7 m/s.

Explanation:

Given;

initial velocity of the runner, u = 1.1 m/s

constant acceleration, a = 0.8 m/s²

time of motion, t = 2.0 s

The velocity of the runner at the end of the given time is calculate as;

v = u + at

where;

v is the final velocity of the runner at the end of the given time;

v = 1.1 + (0.8)(2)

v = 2.7 m/s

Therefore, the final velocity of the runner at the end of the given time is 2.7 m/s.

7 0
2 years ago
Two polarizers A and B are aligned so that their transmission axes are vertical and horizontal, respectively. A third polarizer
Reptile [31]

Answer:

Explanation:

Let the angle between the first polariser and the second polariser axis is θ.

By using of law of Malus

(a)

Let the intensity of light coming out from the first polariser is I'

I' = I_{0}Cos^{2}\theta     .... (1)

Now the angle between the transmission axis of the second and the third polariser is 90 - θ. Let the intensity of light coming out from the third polariser is I''.

By the law of Malus

I'' = I'Cos^{2}\left ( 90-\theta \right )

So,

I'' = I_{0}Cos^{2}\theta Cos^{2}\left ( 90-\theta \right )

I'' = I_{0}Cos^{2}\theta Sin^{2}\theta

I'' = \frac{I_{0}}{4}Sin^{2}2\theta

(b)

Now differentiate with respect to θ.

I'' = \frac{I_{0}}{4}\times 2 \times 2 \times Sin2\theta \times Cos 2\theta

I'' = \frac{I_{0}}{2}\times Sin 4\theta

7 0
3 years ago
Two long parallel wires 40 cm apart are carrying currents of 10 A and 20 A in the opposite direction. What is the magnitude of t
Alex_Xolod [135]

Answer:

The magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.

Explanation:

Given;

distance half way between the parallel wires, r = ¹/₂ (40 cm) = 20 cm = 0.2 m

current carried in opposite direction, I₁ and I₂ = 10 A and 20 A respectively

The magnitude of the magnetic field halfway between the wires can be calculated as;

B = \frac{\mu _oI_1}{2 \pi r} + \frac{\mu_oI_2}{2\pi r}

where;

B is magnitude of the magnetic field halfway between the wires

I₁ is current in the first wire

I₂ is current the second wire

μ₀ is permeability of free space

r is distance half way between the wires

B = \frac{\mu_o I_1}{2\pi r} + \frac{\mu_o I_2}{2\pi r} \\\\B = \frac{\mu_o }{2\pi r} (I_1 +I_2)\\\\B = \frac{4\pi *10^{-7} }{2\pi *0.2} (10 +20) = 3.0 *10^{-5}\  T

Therefore, the magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.

5 0
3 years ago
Other questions:
  • A positive test charge of 5.00 E-5 C is places in an electric field. The force on it is 0.751 N. The magnitude of the electric f
    15·2 answers
  • Which of the following selections completes the following nuclear reaction?
    6·1 answer
  • What parts are found in an electric generator
    14·2 answers
  • HELP ASAP PLZ!
    13·2 answers
  • The hill is covered in gravel so that the truck's wheels will slide up the hill instead of rolling up the hill. The coefficient
    14·1 answer
  • After inspecting all of 55,000 kg of meat stored at the Wurst Sausage Company, it was found that 45,000 kg of the meat was spoil
    10·1 answer
  • How much heat is needed to vaporize 33.3 grams of ethyl alcohol at its boiling point of 78.0°C? The latent heat of vaporization
    10·2 answers
  • Ouestion 1
    6·1 answer
  • Which of the following are benefits you can receive from exercising at higher heart rates? Question 5 options:
    9·2 answers
  • Identify some sports or activities you can do to improve your overall health and explain how physical activity can improve your
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!