The cost of running the lightbulb A for 30 days at 0.110 per KWh is 1.98
<h3>How to determine the energy </h3>
We'll beging by calculating the energy used by lightbulb A. This can be obtained as follow:
- Power (P) = 25 watts = 25 / 1000 = 0.025 KW
- Time (t) = 30 days = 30 × 24 = 720 h
- Energy (E) =?
E = Pt
E = 0.025 × 720
E = 18 KWh
<h3>How to determine the cost for running the bulb for 30 days</h3>
The cost of running the bulb for 30 days can be obtained as follow:
- Cost per KWh = 0.11
- Energy (E) = 18 KWh
- Cost =?
Cost = energy × Cost per KWh
Cost = 18 × 0.11
Cost = 1.98
Lean more about buying electrical energy:
brainly.com/question/16963941
#SPJ4
10°c
Explanation:
Given parameter;
Lower fixed point = 30mm
Upper fixed point = 180mm
Reading = 45mm
Unknown:
The degree celcuis temperature at 45mm = ?
Solution:
To solve this problem we simply compare the mm- scale to the celcius - scale that we know.
The upper fixed point is the boiling point of water
Lower fixed point is the freezing point of water
This shows that both the upper and lower fixed point of both thermometers are the same;
mm-scale °c scale
180mm 100°c
45mm x
30mm 0°c
Solving;

x (150) = 100 x 15
x = 10°c
learn more:
Temperature scales brainly.com/question/1603430
#learnwithBrainly
D.) In order to calculate both of them, we must know the "FORCE" on the system.
-Reduce the sample size so the experiment can be done faster.-Increase the sample size from 6 cups to 12 cups of sand and water.-Use more legible handwriting when recording data.-Use more precise digital thermometers.<span>-Use more precise scales that measure to the hundredth of a gram.</span>