Evidence of Chemical Change:
A car rusting
Leaves changing in October
The glow of a light bulb
A white cloudy substance occurs after mixing two substances
Burning toasts
A candle being lit
Evidence of Physical Change:
Water boiling
Yellow and blue paints mixed together
Wax melting
Crushing a rock with a hammer
Hope this helps!
Have a great day!
Answer:
-2040 m/s²
Explanation:
Taking toward the wall to be positive, the initial velocity is 10.1 m/s and the final velocity is -8.3426 m/s.
Average acceleration is the change in velocity over change in time.
a = Δv / Δt
a = (-8.3426 m/s − 10.1 m/s) / 0.00905 s
a = -2040 m/s²
the independent variable is what you're testing or changing in an experiment, so the answer is the temperature of the ball when its dropped.
i hope that helped <3
Answer:
Displacement: 6.71 m, Direction: 63.4 degrees north of east
Explanation:
In the attached image we can aprecciate each one of the movements of the parade. Let's say that the parade started from the origin (point (0,0)) then it moves to the east 4 blocks it means now the parade is located at point (4,0).
Then the parade went to the south three blocks, so it moves to the coordinate (4,-3). After this the parade went to the west one block so the new coordinate point is (3, -3).
And finally the movement of the 0 parade was 9 blocks to the north. It means the final point is now (0,9) - (3,-3) = (3,6)
And the displacement will be defined by the folliwing vector operation:

We know that the magnitude of the displacement vector is defined by the phytagoras theorem

And the angle will be defined by:
tan(beta)=3/6
beta = tan^-1(6/3)
beta = 63.43°
Answer:
The bulb B glows brighter.
Explanation:
Given that,
A glows brightly and B glows dimly.
According to ohm's law,
Two light bulbs A and B are connected in series to a battery then the current will be same in both bulbs and the resistance is high of bulb A and low in bulb B.
If bulb A connect to a battery and bulb B connect to a same battery separately.
Then bulb B glows brighter because the resistance is high in bulb A so the current will be low.
The resistance is low in bulb B so the current will be high.
Hence, The bulb B glows brighter.