Answer:
<h2>6.75 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question we have
mass = 2.7 × 2.5
We have the final answer as
<h3>6.75 g</h3>
Hope this helps you
Boyle's Law
P1V1 = P2V2
1.8 atm * 2.5 L = P2 * 1.2 L
1.8 atm * 2.5 L / 1.2 L = P2
3.75 atm = P2
Using significant digits, the answer is 3.8 atm
<h2>
<u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>:</u><u>-</u></h2>
<em>The female part is the pistil. The pistil usually is located in the center of the flower and is made up of three parts: the stigma, style, and ovary. The stigma is the sticky knob at the top of the pistil. It is attached to the long, tube</em><em> </em><em>like structure called the style</em><em>.</em>
<h3>
<em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>I</u></em><em><u>t</u></em><em><u> </u></em><em><u>W</u></em><em><u>i</u></em><em><u>l</u></em><em><u>l</u></em><em><u> </u></em><em><u>H</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u> </u></em><em><u>Y</u></em><em><u>o</u></em><em><u>u</u></em><em><u> </u></em><em><u>!</u></em></h3>
Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ = 4.11 × 10⁻³ grams.
Shift to reactants(left)
<h3>Further explanation
</h3>
A buffer solution is a solution that can maintain a good pH value due to the addition of a little acid or a little base or dilution.
The buffer solution can be acidic or basic
Acid buffer solutions consist of weak acids and their salts.
A buffer solution of NaC2H202 and HC2H2O2 (acetic acid) is included in the acid buffer
So :
a slight addition of acid (H⁺) will be balanced by the conjugate base
the addition of a small base (OH⁻) will be balanced by the weak acid
With the addition of acid (H +), the equilibrium will shift to the left, in the formation of CH3COOH. The added acid will be neutralized by the conjugate base component (CH3COO−).