The balanced equation for the above reaction is
2K₃PO₄ + 3NiCl₂ ---> 6KCl + Ni₃(PO₄)₂
stoichiometry of K₃PO₄ to NiCl₂ is 2:3
the number of NiCl₂ moles reacted - 0.0110 mol/L x 0.154 L = 1.69 x 10⁻³ mol
if 3 mol of NiCl₂ reacts with - 2 mol of K₃PO₄
then 1.69 x 10⁻³ mol of NiCl₂ reacts with - 2/3 x 1.69 x 10⁻³ = 1.13 x 10⁻³ mol of K₃PO₄
molarity of K₃PO₄ solution given - 0.205 M
there are 0.205 mol in 1 L
therefore 1.13 x 10⁻³ mol are in - 1.13 x 10⁻³ mol / 0.205 mol/L = 5.51 mL
volume of K₃PO₄ required - 5.51 mL
Anytime an atom shares or transfers electrons a bond is formed, sharing= covalent and transfer= ionic
Answer:
Kc for this reaction is 0.06825
Explanation:
Step 1: Data given
Number of moles formaldehyde CH2O = 0.055 moles
Volume = 500 mL = 0.500 L
At equilibrium, the CH2O(g) concentration = 0.051 mol
Step 2: The balanced equation
CH2O <=> H2 + CO
Step 3: Calculate the initial concentrations
Concentration = moles / volume
[CH2O] = 0.055 moles . 0.500 L
[CH2O] = 0.11 M
[H2] = 0M
[CO] = 0M
Step 4: The concentration at the equilibrium
[CH2O] = 0.11 - X M = 0.051 M
[H2] = XM
[CO] = XM
[CH2O] = 0.11 - X M = 0.051 M
X = 0.11 - 0.051 = 0.059
[H2] = XM = 0.059 M
[CO] = XM = 0.059 M
Step 5: Calculate Kc
Kc = [H2][CO]/[CHO]
Kc = (0.059 * 0.059) / 0.051
Kc = 0.06825
Kc for this reaction is 0.06825
Answer:
Here:
Explanation:
To familiarize students with experimental apparatus, the scientific method, and methods of data analysis so that they will have some idea of the inductive process by which the ideas were originated. To teach how to make careful experimental observations and how to think about and draw conclusions from such data.