Answer:
- Addition of Ba(OH)2: favors the formation of a precipitate.
- Undergo a chemical reaction forming soluble species.
- Addition of CuSO4 : favors the formation of a precipitate.
Explanation:
Hello,
In this case, since the dissociation reaction of barium sulfate is:

We must analyze the effect of the common ion:
- By adding barium hydroxide, more barium ions will be added to the equilibrium system so the formation of solid barium sulfate will be favored (reaction shifts leftwards towards reactants).
- By adding sodium nitrate, the following reaction will undergo:

So the precipitate will turn into other soluble species.
- By adding copper (II) sulfate, more sulfate ions will be added to the equilibrium system so the formation of solid barium sulfate will be favored (reaction shifts leftwards towards reactants).
All of this is supported by the Le Chatelier's principle.
Best regards.
Answer:
Yes
Explanation:
A supercritical fluid has good properties for both liquid and as for extraction properties, the advantages then include:
- The fact that it has a lower viscosity than liquid CO2 allowing it to move through and around coffee beans more thoroughly with creating back pressure
- Its density is comparable to that of liquid CO2 meaning there is much CO2 per litre as there is liquid form making it more efficient
- It has a higher diffusivity than liquid CO2 which aids with penetration of the coffee beans on a molecular level
This experiment would not work with tea leaves because they also contain caffeine
Answer:
The correct answer is - Mosquitoes transmit the virus as parasites which feed on the blood of host organisms and inject the virus during feeding.
Explanation:
According to the CDC, the seasonal West Nile virus is caused by the mosquitoes of freshwater transmit this disease to humans and others. These mosquitoes are feed on the birds and pick these viruses.
These viruses stick on mosquitoes and when they feed on the blood of humans they transmit these viruses by injecting viruses into the blood of humans.
Answer:
60 moles of NaF
Explanation:
The balanced equation for the reaction is given below:
Al(NO3)3 + 3NaF —> 3NaNO3 + AlF3
From the balanced equation above,
3 moles of NaF reacted to produce 1 mole of AlF3.
Therefore, Xmol of NaF will react to produce 20 moles of AlF3 i.e
Xmol of NaF = 3 x 20
Xmol of NaF = 60 moles
Therefore, 60 moles of NaF are required to produce 20 moles of AlF3.